LIQUID BIOPSY TO IDENTIFY ACTIONABLE BIOMARKERS IN mNSCLC

Tissue-based testing is the gold standard but is not always available¹

- ~20% of patients have inadequate tumor tissue for molecular analysis at diagnosis^{2,3}
- Repeat biopsies are not feasible in almost 20% of patients with advanced NSCLC³
- Almost 25% of repeat biopsies fail to yield sufficient material for genomic analysis³

A prospective study of 323 patients with mNSCLC who had blood-based biomarker testing ordered as part of routine clinical management showed that⁴:

44%

of eligible patients were unable to get complete genomic results from tissue biopsy

~2×

as many patients had targeted alterations detected by liquid biopsy and tissue testing (n=82) vs tissue testing alone (n=47)

Liquid biopsy is a diagnostic technique that measures either cell-free DNA (cfDNA), circulating tumor cells (CTCs), or tumor exosomes from bodily fluids such as blood, urine, or saliva^{5,6}

E,

Liquid biopsy may be used to test for important biomarkers in NSCLC including *ALK, BRAF, EGFR, MET, RET, and ROS1*⁷⁻⁹

Multiple liquid biopsy tests are FDA approved as companion diagnostics for specific mutations^{8,9}

Liquid biopsies can help ensure patients receive comprehensive biomarker testing¹⁰

A retrospective cohort study of 330 patients with non-squamous stage IV NSCLC assessed the impact of paired tissue and plasma-based NGS on the comprehensiveness of genetic testing and overall survival (OS)¹⁰

- Genomic testing was either comprehensive (including *EGFR*, *ALK*, *BRAF*, *ROS1*, *MET*, *RET*, and *NTRK*), incomplete (2-6 genes), or not done
- Concurrent tissue and plasma testing significantly increased the proportion of patients undergoing comprehensive testing
- Median OS was 22.1 months in patients who received comprehensive testing and 11.6 months in the incomplete/no testing group
- The data suggest that treatment with a matched therapeutic approach may impact long-term outcomes

• Similar results were seen in the incomplete/no testing group

Genentech A Member of the Roche Group

Liquid biopsy results demonstrate clinical applicability in the NSCLC treatment paradigm^{11,12}

The Blood First Assay Screening Trial (BFAST) is an open-label, multicohort trial that examined outcomes in patients with advanced or mNSCLC whose treatment decisions were driven by blood-based NGS^{11,12}

- Of the six BFAST cohorts that have been initiated (ALK, ROS1, RET, BRAF, EGFR and bTMB), two (ALK and ROS1) have been completed^{11,12}
- So far, the use of blood-based NGS to identify patients with ALK+ and ROS1+ NSCLC prior to commencement of targeted therapy has demonstrated the clinical applicability of liquid biopsy-driven diagnostics as a method to prospectively screen patients for actionable mutations^{11,12}

Blood-based NGS has the potential to overcome some of the limitations associated with tissue collection and testing, which may enable clinicians to offer personalized therapies¹³

	NGS on Liquid Biopsy ^{7-9,13}	NGS on Tissue Biopsy ^{13,14}
Invasiveness	Peripheral blood draw	Invasive surgical procedure
Turnaround time	Rapid	Slower
Evidence for treatment selection	Emerging	Established
Sample requirement (per lab guidance)	10-20 mL blood	>8 slides

Potential ways to incorporate liquid biopsies in practice¹⁵

mNSCLC = metastatic NSCLC; NGS = next-generation sequencing; NSCLC = non-small cell lung cancer.

References: 1. Bonanno L, et al. *Br J Cancer.* 2022;127:383–393. 2. Lim C, et al. *Ann Oncol.* 2015;26:1415-1421. 3. Chouaid C, et al. *Lung Cancer.* 2014;86:170-173. 4. Aggarwal C, et al. *JAMA Oncol.* 2019;5:173-180.
5. Gold B, et al. *J Mol Diagn.* 2015;17:209-224. 6. Diaz LA, et al. *J Clin Oncol.* 2014;32:579-586. 7. FoundationOne Medicine. https://www.foundationmedicine.com/test/foundationone-liquid. August 29, 2022.
8. Guardant Health. https://guardanthealth.com/. Accessed August 29, 2022. 9. NeoGenomics. https://neogenomics.com/diagnostic-services/specialty-testing/liquid-biopsy. Accessed August 29, 2022. 10. Aggarwal C et al. *J Clin Oncol.* 2022;40:16_suppl, 9022-9022. 11. Dziadziuszko R, et al. *Transl. Oncol.* 2021;16:2040-2050. 12. Peters S, et al. *J. Clin Oncol.* 2022;40(17):1. 13. Merker JD, et al. *J Clin Oncol.* 2018;36:1631-1641.
14. Hovelson DH, et al. *Neoplasia.* 2015;17:385-399. 15. Rolfo et al. *J Thorac Oncol.* 2021;16(10):1647-1662.

